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Sleep-specific oscillations of spindles and slow waves are generated through thalamocortical and corticocortical loops, respectively, and
provide a unique opportunity to measure the integrity of these neuronal systems. Understanding the relative contribution of genetic
factors to sleep oscillations is important for determining whether they constitute useful endophenotypes that mark vulnerability to
psychiatric illness. Using high-density sleep EEG recordings in human adolescent twin pairs (n � 60; 28 females), we find that over
posterior regions 80 –90% of the variance in slow oscillations, slow wave, and spindle activity is due to genes. Surprisingly, slow (10 –12
Hz) and fast (12–16 Hz) anterior spindle amplitude and � power are largely driven by environmental factors shared among the twins. To
our knowledge this is the first example of a neural phenotype that exhibits a strong influence of nature in one brain region, and nurture
in another. Overall, our findings highlight the utility of the sleep EEG as a reliable and easy to measure endophenotype during adoles-
cence. This measure may be used to measure disease risk in development before the onset of a psychiatric disorder; the location within the
brain of deficits in sleep neurophysiology may suggest whether the ultimate cause is genetic or environmental.
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Introduction
Studying the sleeping brain has recently been recognized as a
powerful method to understand neural function. Compared with

waking measures, which are susceptible to both internal (e.g.,
attention) and external influences (Kitsune et al., 2015), the sleep
EEG offers a stable state that is unaffected by such factors. Over
the last decade a functional role of sleep-specific oscillations in
sleep-dependent learning, synaptic plasticity, and the recupera-
tive function of sleep have been found (Abel et al., 2013). One
such oscillation is the sleep spindle: waxing and waning bursts in
the sleep EEG between 11 and 16 Hz. Sleep spindles are generated
through thalamocortical loops and thus are a valuable and
unique marker of the integrity of this system in humans (Hugue-
nard and McCormick, 2007; Andrillon et al., 2011). Deficits in
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support with the EEG data processing; and Dr. Ben Collins for commenting on the paper.

The authors declare no competing financial interests.
*T.R. and C.H. contributed equally to this work as co-first authors.
Correspondence should be addressed to Dr. Leila Tarokh, University Hospital of Child and Adolescent Psychiatry

and Psychotherapy, University of Bern, Bolligenstrasse 111, Haus A, 3000 Bern 60, Switzerland. E-mail:
leila.tarokh@upd.unibe.ch.

DOI:10.1523/JNEUROSCI.0945-18.2018
Copyright © 2018 the authors 0270-6474/18/389275-11$15.00/0

Significance Statement

Two cardinal oscillations of sleep, slow waves and sleep spindles, play an important role in the core functions of sleep including
memory consolidation, synaptic plasticity, and the recuperative function of sleep. In this study, we use a behavioral genetics
approach to examine the heritability of sleep neurophysiology using high-density EEG in a sample of early adolescent twins. Our
findings reveal a strong influence of both environmental and genetic factors in shaping these oscillations, dependent on brain
region. Thus, during a developmental period when brain structure and function is in flux, we find that the sleep EEG is among the
most heritable of human traits over circumscribed brain regions.
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sleep spindles have been reported in many patient populations.
For example, significantly diminished sleep spindles have been
found in schizophrenic patients (for review, see Manoach et al.,
2016; Ferrarelli and Tononi, 2017). Interestingly, in contrast to
equivocal findings with regard to other neurophysiological mark-
ers, the deficits in sleep spindles are consistent across studies
suggesting a potentially powerful endophenotype (Manoach et
al., 2016).

Spindles are not only associated with disordered brains. Sev-
eral lines of research have identified a role of sleep spindles in
cognitive processes. For example, greater spindle activity has
been associated with a higher intelligence quotient (for review,
see Ujma et al., 2016) and spindles have been shown to be bene-
ficial for memory formation and learning (for review, see Lüthi,
2014). Due to this link and based on work in animals showing
that spindles can induce postsynaptic long-term potentiation
(Rosanova and Ulrich, 2005), spindles have been hypothesized to
be important for synaptic plasticity in the healthy brain.

Another key sleep oscillation implicated in sleep-dependent
recovery are slow waves; high-amplitude, low-frequency oscilla-
tions that are homeostatically regulated. Slow waves originate in
the cortex and propagate by corticocortical and corticothalamo-
cortical connections (Steriade, 2006). Slow waves are locally in-
tensified in a use-dependent manner; if a cortical region is
extensively used during the waking day, that region will exhibit
greater slow-wave activity (SWA) in the subsequent sleep episode
(Huber et al., 2004). Slow waves are hypothesized to be respon-
sible for the recuperative function of sleep, downscaling synapses
that are potentiated during the waking day as a result of learning
(Tononi and Cirelli, 2006). Aberrations in SWA have been re-
ported for several psychiatric and neurological disorders includ-
ing depression (Tesler et al., 2016), schizophrenia (Keshavan et
al., 1998; Sekimoto et al., 2007), and Alzheimer’s disease (Mander
et al., 2015).

Together, the above findings paint a picture highlighting the
importance of sleep spindles and slow waves as a window onto
corticocortical and thalamocortical function in health and dis-
ease. Adding to the utility of sleep EEG oscillations is the stability
of this measure over time (De Gennaro et al., 2005; Buckelmüller
et al., 2006; Tinguely et al., 2006; Bódizs et al., 2009; Tarokh et al.,
2011; Benz et al., 2013; Bersagliere et al., 2018). Furthermore, two
twin studies in adults have shown that the sleep EEG is highly
heritable. One limitation of these studies is the use of a one (left
central; Ambrosius et al., 2008) to three (midline frontal, central,
and parietal; De Gennaro et al., 2008) EEG derivations. The sleep
EEG shows strong topographic variation dependent on fre-
quency band; in adults, SWA is maximal over frontal regions,
whereas sleep spindles are maximal over central regions (Finelli et
al., 2001). Therefore, as is seen in MRI twin studies (Lenroot et al.,
2009) of gray and white matter volume, the genetic contribution
may vary dependent on brain region.

Although much has been gained from studying the heritability
of the sleep EEG in adults, there are several reasons to study
adolescent sleep neurophysiology. For one, many neuropsychiat-
ric disorders have their onset during adolescence (Fatemi and
Folsom, 2009). Furthermore, the search for endophenotypes to
measure vulnerability to an illness is arguably most fruitful
during development given the higher degree of plasticity in ado-
lescence and the higher efficacy of interventions in this develop-
mental phase. Finally, during adolescence the brain undergoes
rapid restructuring (Giedd et al., 2015) manifest in the sleep EEG
as a steep decline in power (Buchmann et al., 2011). Therefore,

findings regarding the heritability of the sleep EEG in adults can-
not be generalized to adolescents. The aim of this study was to use
high-density sleep EEG recordings in twins to quantify the heri-
tability of sleep neurophysiology in early adolescence across brain
regions.

Materials and Methods
Participants and recording. High-density sleep EEG data (58 channels)
were recorded in 18 (n � 36; n � 18 females) monozygotic (MZ) and 12
(n � 24; n � 12 females) same-sex dizygotic (DZ) twin pairs. A single
triplet pair consisting of a MZ pair and DZ were included in both the MZ
and DZ analyses. Most participants (n � 49) were between the ages of 12
and 14 years, the remaining participants were 11 years old, thus the mean
age of the sample was 12.46 (SD � 1.36) years. Participants were healthy,
born in the 30th gestation week or later, and in general were good sleep-
ers. Sleep EEG, EOG (right and left), EMG (mentalis and submentalis),
and ECG were recorded using a modified version of the electrical geode-
sics (EGI) 64 channel system.

Protocol. Two consecutive nights of sleep EEG were recorded (an ad-
aptation night followed by a baseline night) in participants homes. Pre-
cautions were taken to minimize exposure to outside light and sound.
Before recordings, participants spent at least 5 d on a stabilization sched-
ule (based on school start time), ensuring time in bed between 9.5 and
10 h and thus adequate sleep. Compliance to the sleep schedule was
determined via actigraphy and sleep diary. Caffeine intake was prohib-
ited for 3 d before and during the study.

Analysis. Analyses were performed on the baseline night of sleep with
the exception of three subjects in which the adaptation night was used
due to insufficient data quality on the baseline night. Data were scored
according to standard criteria (Rechtschaffen and Kales, 1968).

Data were high-pass filtered (subtracting sliding median across 10 s),
low-pass filtered at 100 Hz (Fourier filter: FFT of EEG followed by setting
of frequencies �100 Hz to 0 and then performing an inverse FFT) and
downsampled to 250 Hz (collected at 1000 Hz). EEGs were re-referenced
to average reference, excluding channels with poor quality. Bad channels
were individually identified by visual inspection of the spectrograms cal-
culated with the acquisition reference. Power density spectra were calcu-
lated for 30 s epochs using Welch’s method (5 s sub-epochs, Hanning
window, no overlap). Artifacts were excluded semiautomatically, when-
ever power exceeded a threshold based on a moving average over 21
epochs for the frequency bands 0.8 – 4.6 and 20 – 40 Hz (Buckelmüller et
al., 2006). NREM sleep EEG power for the following bands were used for
analysis: slow oscillations (SOs; 0.6 –1.2 Hz), SWA (1.4 – 4.6 Hz), theta
(4.8 –7.8 Hz), � (8 –10.8 Hz), � (11–16 Hz), beta 1 (16.2–20 Hz), beta 2
(20.2–24 Hz), gamma 1 (24.2–34 Hz), and gamma 2 (34.2– 44 Hz).

In addition to examining the above bands, we used a spindle detection
algorithm to detect and characterize individual spindles. The algorithm
we used was similar to (Ferrarelli et al., 2007); however, instead of the
rectified bandpass filtered signal we used the envelope of the bandpass

Table 1. Mean and SD of sleep-stage variables along with estimates for genes (A),
shared environmental factors (C), and unique environmental
factors/measurement error (E) influences to sleep-stage parameters

Mean (SD) Genes (A)
Shared
Environment (C)

Unique Environment/
Error (E)

Sleep efficiency, % 91.71 (5.05) 0.32 0 0.86
Sleep latency, min 20.56 (15.08) 0.72 0 0.27
REM sleep, min 141.32 (35.68) 0 0.19 0.81
REM sleep latency, min 104.53 (43.57) 0.40 0 0.60
Stage 1, min 3.26 (5.37) 0 0.85 0.15
Stage 2, min 237.23 (52.76) 0 0.43 0.57
Slow-wave sleep, min 150.36 (45.75) 0.37 0 0.63
Total sleep time, min 532.18 (47.26) 0.02 0 0.98
Wake after sleep onset 26.51 (27.71) 0.32 0 0.68

With few exceptions, most of the variance for sleep-stage parameters is absorbed by unique environmental factors/
measurement error (E). Minutes of Stage 1 sleep showed a large influence of shared environmental factors (C),
whereas sleep latency was genetically determined.
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filtered signal derived from the Hilbert transform with an upper thresh-
old of 6 and a lower threshold of 2 based on Warby et al. (2014) and
McClain et al. (2016). We then divided spindles into slow (�10 but �12
Hz) and fast (�12 and �16 Hz) spindles, because separate mechanism of
generation and function have been attributed to these two spindle classes.
Furthermore, slow and fast spindles show topographic segregation with
fast spindles prevailing over posterior regions and slow spindles over
anterior regions (Werth et al., 1997; Bersagliere et al., 2018). For each
class of spindles we quantify amplitude, duration, density, and integrated
spindle activity (ISA), which is obtained by integrating the absolute am-
plitude over the duration of each spindle (Ferrarelli et al., 2010).

Statistics. To differentiate between genetic and environmental factors,
structural equation modeling (SEM) with OpenMx in R (Boker et al.,
2011) was used. SEM is a standard tool used in twin research as it allows
for the quantification of latent factors (e.g., genes and environment) to be
made based on observed data. The estimation of latent factors is achieved
based on the assumption that the genetic concordance between MZ twins
is 1, whereas it is 0.5 in DZ twins. On the other hand, both MZ and DZ
twins share a familial and school environment, therefore the shared en-
vironmental concordance is 1 for both MZ and DZ twins. Unique envi-
ronmental factors are factors that are uncorrelated among both MZ and
DZ twins. Based on these assumptions a path diagram can be built that
can estimate the contribution of genetic factors (A), shared environmen-
tal factors (C), and unique environmental factor and measurement error

(E). A, C, and E can vary between 0 and 1 and sum to 1, with 1 indicating
that 100% of the variance is due to that factor. In some cases, estimates of
C or A were close to zero and the full model (ACE) exhibited the highest
Akaike information criterion, a measure of the goodness of fit of the
model where lower values indicate a better fit. In these instances, the
analysis was redone excluding the estimate that was close to zero (and
nonsignificant) to achieve a better fit of the model (Evans et al., 2002;
Rijsdijk and Sham, 2002).

To make our results comparable to the findings of the two previous
twin studies conducted in adults, we also conducted an intraclass corre-
lation coefficient (ICC) analysis. Furthermore, in the twin literature,
Falconers heritability, h2, defined as 2(rMz � rDZ), where rMz and rDZ are
the correlation within MZ and DZ twin pairs, respectively, is typically
used. Therefore, we also used this metric. We note, however, that these
two measures yield very similar results, with the primary difference being
that correlation coefficients (i.e., Falconers heritability) do not take in-
tersubject variability into account. Compared with SEM, these analyses
cannot tease apart the genetic from the environmental influence on a
given phenotype. Rather, they are a measure of the similarity between
MZ compared with DZ twins with the assumption that greater similarity
between MZ twin pairs compared with DZ twins is because of the higher
proportion of shared genes among MZ twins.

For both ICC and correlation analysis, we used a bootstrap statistic
whereby all MZ twins were pooled independent of twin status. Two

Figure 1. Top three rows depict results from the SEM analysis. In these topographic maps the amount of variance (percentage) explained by A, C, and E contributors to SOs (0.6 –1.2 Hz), SWA
(1.4 – 4.6 Hz), theta (4.8 –7.8 Hz), � (8 –10.8 Hz), and � (11–16 Hz) power in NREM sleep is shown. Data for SEM analyses are scaled from 0 to 100% and warm colors indicate that a large portion
of the variance is explained by the plotted factor, whereas cool colors indicate little or no contribution to the variance of the plotted factor. The bottom (i.e., fourth) row shows the topographic
distribution of power averaged across all subjects (independent of twin status). The minima and maxima for each of these maps are shown in microvolts squared at the top right of the map. Electrode
locations are shown with a black dot in all topographic maps.
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groups were randomly drawn from this pool and the correlation coeffi-
cient/ICCs between these groups were calculated. This procedure was
repeated 1000 times resulting in a distribution of the r and ICC values.
The r and ICC values obtained from the observed dataset were then
compared with the distribution obtained from random sampling. A p
value was defined as the number of instances where the value obtained
from random sampling was larger than that observed in the data divided
by 1000. In this way, we can calculate the probability of obtaining our
results by chance and control the familywise error rate (Maris and Oost-
enveld, 2007; Pernet et al., 2015). The same procedure was performed for
DZ twins.

Results
Structural equation modeling: sleep stages
Participants slept well (sleep efficiency � 90%), showed an aver-
age sleep latency (21 min) typical for this age group, and slept
�8.9 h (Table 1). SEM analysis revealed that most sleep-stage
variables did not show a strong genetic or shared environmental
influence (Table 1). Exceptions to this were sleep latency, which
showed a strong genetic contribution (A � 0.73). Furthermore,
wake after sleep onset (A � 0.32), duration of slow-wave sleep
(A � 0.37), REM sleep latency (A � 0.40), and sleep efficiency

(A � 0.32) showed moderate genetic influence. A shared envi-
ronmental influence was found for the duration of Stage 1 (C �
0.85) and Stage 2 (C � 0.43) sleep.

Structural equation modeling: EEG power
Strong genetic contributions to slow oscillations were observed
over central, temporal, parietal and occipital regions (30 deriva-
tions with an estimate of A between 61 and 89%; Fig. 1). Con-
versely, unique environmental factors accounted for the variance
in SOs over frontal and left temporal regions (16 derivations with
an estimate of E between 51 and 90%). With regard to SWA, a mea-
sure of sleeps recuperative process, we find that it is under high
genetic control (A in model, standardized estimates of 60–93% of
the variance due to genes for 44 derivations) over widespread cortical
regions (Fig. 1). Similar to SOs, we find a contribution of unique
environmental factors to variance over right frontal derivations (E in
model, 30–44% of variance because of unique environment; 12
EEG derivations). Accordingly, we find minimal contribution of
shared environment to SWA and SOs.

Using � power (11–16 Hz) as one proxy for spindles (Dijk et
al., 1993; Warby et al., 2014), we find that posterior spindles (19

Figure 2. Top three rows depict results from the SEM analysis. In these topographic maps the amount of variance (percentage) explained by A, C, and E to slow (10 –12 Hz) and fast (12–16 Hz)
sleep-spindle amplitude and ISA is shown. Data for SEM analyses are scaled from 0 to 100% and warm colors indicate that a large portion of the variance is explained by the plotted factor, whereas
cool colors indicate little or no contribution to the variance of the plotted factor. The bottom (i.e., fourth) row shows the topographic distribution of spindle amplitude (measured in microvolts) and
ISA (measured in microvolts per second) averaged across all subjects (independent of twin status). The minima and maxima for each of these maps are shown at the top right of the map. Electrode
locations are shown with a black dot in all topographic maps.
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derivations) show strong genetic modulation (A), and no impact
of shared environment (C � 0) with estimates of A between 88
and 97% (Fig. 1). On the other hand, � power recorded at frontal/
frontal-central sites (7 derivations; red areas) show strong shared
environmental modulation with estimates of C between 79 –
81%, with small genetic impact (A � 20%). We find a similar
pattern of results when using individually detected spindles
parsed into two classes based on frequency (i.e., slow and fast
spindles). For both fast and slow spindles, amplitude and ISA
showed a contribution of shared environmental factors over
frontal/frontal-central sites (Fig. 2), although the estimated envi-
ronmental contribution was qualitatively less than that observed
for � power (amplitude low spindles: 14 derivations with esti-
mates of C between 42 and 60%; amplitude fast spindles: 11
derivations with estimates of C between 40 and 52%; ISA slow
spindles: 5 derivations with estimates of C between 40 and 50%;
ISA fast spindles: 12 derivations with estimates of C between 40
and 61%).

With regard to the duration of slow spindles (Fig. 3) we ob-
serve a strong genetic contribution over frontal/central regions
(32 derivations with estimates of A between 60 and 88%) and a

unique environmental contribution over posterior regions (11
derivations with estimates of E between 50 and 79%). On the
other hand, the duration of fast spindles was largely genetically
driven (42 derivations with estimates of A between 60 and 89%)
but showed a contribution of shared environmental factors over
frontal/frontal-central sites (6 derivations with estimates of C
between 40 and 53%). The topographic pattern of genetic and
environmental factors to spindle density mirrored that of spindle
duration, with slow spindles showing a contribution of unique
environmental factors over posterior regions (10 derivations with
estimates of E between 40 and 61%), whereas fast spindles
showed a contribution of shared environmental factors over
frontal/central and occipital regions (15 derivations with esti-
mates of C between 40 and 98%).

Power in the theta band also showed both strong genetic and
shared environmental influences (Fig. 1). Derivations over lateral
frontal/parietal regions (n � 10) showed nearly equal contribu-
tion of shared environmental and genetic impact, i.e., �50% of
the variance explained by each factor. Elsewhere, power in this
band was predominantly determined by genetic factors (n � 26

Figure 3. Top three rows depict results from the SEM analysis. In these topographic maps depicting the amount of variance (%) explained by A, C, and E to slow (10 –12 Hz) and fast (12–16 Hz)
sleep-spindle duration and density is shown. Data for SEM analyses are scaled from 0 to 100% and warm colors indicate that a large portion of the variance is explained by the plotted factor, whereas
cool colors indicate little or no contribution to the variance of the plotted factor. The bottom (i.e., fourth) row shows the topographic distribution of spindle duration (measured in seconds) and
density (spindles/min) averaged across all subjects (independent of twin status). The minima and maxima for each of these maps are shown at the top right of the map. Electrode locations are shown
with a black dot in all topographic maps.
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derivations with a range between 70 and 93% of the variance due
to genes).

EEG power in the other frequency bands was almost entirely
heritable (Figs. 1, 4): � (n � 47 derivations with 70 –96% of the
variance due to genes), beta 1 (n � 36 derivations with 70 –97% of
the variance due to genes), beta 2 (n � 45 with 70 –96% of the
variance due to genes), gamma 1 (n � 40 with 70 and 94% of
the variance due to genes), and gamma 2 (n � 36 with 70 –93% of
the variance due to genes).

Generally speaking, we found no correspondence between the
topographic distribution of power, sleep spindle parameters, and
heritability measures (Figs. 1–4, bottom rows). An exception to
this was � power where the region with maximal power roughly
corresponds with regions showing an influence of shared envi-
ronmental factors.

Falconers heritability (h 2) and ICCs
The results of Falconers heritability and the ICC analysis were
similar to the SEM analysis (Figs. 5, 6). Correlation coefficients
were high and statistically significant for MZ twin pairs across
electrodes and bands (Figs. 5, 6). On the other hand, for DZ twin
pairs, high and significant correlation coefficients were found for

theta, �, �, beta 1, and beta 2 bands only for specific derivations.
Thus, although not as clearly circumscribed as the SEM analyses,
topographic variation in heritability estimates was found using
Falconers estimate [i.e., h2 � 2(rMz � rDZ)]. For SOs and theta to
beta 2, heritability estimates were higher over posterior com-
pared with anterior regions. For gamma 1 and gamma 2, herita-
bility estimates were consistently high across the entire scalp. As
expected, the spatial distribution of ICCs mirrored those of the
correlation analysis (Figs. 5, 6).

Discussion
This is the first study to examine the heritability of the sleep EEG
in a sample of adolescent twins. Due to the steep decline in sleep
EEG power and neurodevelopmental changes during adoles-
cence, heritability findings in adults cannot be extrapolated to
adolescents. Developmental changes in heritability of many traits
have been well documented, likely due to changes in age-related
gene expression patterns (Yang et al., 2016). A meta-analysis re-
viewing the heritability of human traits from 2748 twin studies
found significant age-related changes in heritability (Polderman
et al., 2015). For example, MRI studies have shown a develop-
mental progression in the heritability of gray and white matter

Figure 4. Top three rows depict results from the SEM analysis. In these topographic maps depicting the amount of variance explained by A, C, and E to beta 1 (16.2–20 Hz), beta 2 (20.2–24 Hz),
gamma 1 (24.2–34 Hz), and gamma 2 (34.2– 44 Hz) power in NREM sleep is shown. Data for SEM analyses are scaled from 0 to 100% and warm colors indicate that a large portion of the variance
is explained by the plotted factor, whereas cool colors indicate little or no contribution to the variance of the plotted factor. The bottom (i.e., fourth) row shows the topographic distribution of power
averaged across all subjects (independent of twin status). The minima and maxima for each of these maps are shown in microvolts squared at the top right of the map. Electrode locations are shown
with a black dot in all topographic maps.

9280 • J. Neurosci., October 24, 2018 • 38(43):9275–9285 Rusterholz, Hamann et al. • Brain Region-Specific Inheritance of Sleep EEG



volume, with increasing heritability of white matter and decreas-
ing heritability of gray matter across development (Lenroot et al.,
2009). In the largest twin MRI study to date, individuals in the
same age range as our study (age 12 years), the authors report
heritability estimates were on average �0.5, with values of 0.8 and
higher not achieved until late adolescence (age 17 years). In con-
trast, we find a large number of regions and frequency bands in
the sleep EEG that exhibit heritability values �0.8. Thus, the sleep
EEG, a measure related to brain structure and function, exhibits
even higher heritability than measures of cortical volume and our
findings promote the sleep EEG as among the most heritable
traits to be measured in humans (Polderman et al., 2015).

We find pronounced influence of genes, shared and unique
environmental factors dependent on brain region and frequency
band. This is not surprising given that each EEG frequency band
is associated with somewhat unique neurocircuitry and function
(Lopes da Silva, 1991) in a state-dependent manner. For example,
the generation of sleep spindles relies heavily on the thalamus,
such that a lesion in the thalamus eliminates spindles, but not

slow waves (though the thalamus plays a role in shaping slow
waves; Crunelli and Hughes, 2010).

We find clear topographic segregation of � power and to a
lesser extent spindle amplitude and ISA with shared environmen-
tal factors influencing spindles in anterior regions, whereas ge-
netic factors strongly shape anterior spindles. Further, we found
that shared environmental factors also impact the duration and
density of fast spindles, but not slow spindles. Slow spindle dura-
tion and density showed an impact of unique environmental fac-
tors over posterior regions. Studies in animals have shown that
although spindles begin in the thalamus, thalamocortical cells
play a critical role in determining the duration and density of
sleep spindles (Bonjean et al., 2011; Barthó et al., 2014). These
studies, however, did not examine slow and fast spindles sepa-
rately nor did they examine the impact of topography on their
findings. Therefore, the dissociation of the environmental con-
tribution to slow and fast spindle duration and density remains
unclear and should be examined in future studies. Nonetheless,
examining most measures of spindles, be it � power, spindle

Figure 5. Pearson correlation coefficients (Corr; 3 leftmost plots) and ICCs (3 rightmost plots) for MZ and DZ twins for SOs (0.6 –1.2 Hz), SWA (1.4 – 4.6 Hz), theta (4.8 –7.8 Hz), � (8 –10.8 Hz),
and � (11–16 Hz) power. Derivations exhibiting a significant correlation coefficient (r value) or ICC based on bootstrap statistic are shown with a blue circle, whereas nonsignificant correlations are
shown with a black dot. Falconers heritability (h 2) is shown in the last column for the correlation maps and the difference in ICC values between MZ and DZ twins is shown for the ICC maps (MZ �
DZ). Correlation and ICC maps were scaled between 0 and 1 because negative correlations and ICC values are not biologically meaningful and likely reflect noise. The difference in ICC values between
MZ and DZ twins (i.e., MZ�DZ) and h 2 [i.e., 2� (�MZ�� �DZ�)] for correlation coefficients are scaled between minima (min) and maxima (max); however, we note that negative values (i.e., instance where
ICC and correlation values are larger in DZ compared with MZ twins are not biological meaningful). Minima and maxima occurring within the maps are indicated at the top right of the maps.
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amplitude, or ISA we find an influence of shared environmental
factors over anterior regions.

In addition to being implicated in psychiatric disorders, sleep
spindles play a fundamental role in sleep-dependent learning and
neural plasticity in the healthy brain. Our findings put previous
studies into context, suggesting that deficits in posterior spindles
are driven by genetic factors, whereas anterior spindles are mod-
ifiable through environmental influences. Differential mecha-
nism of spindle generation may underlie the topographic
segregation of genetic from environmental factors. Animal and
human studies have shown that two types of thalamocortical
projections, a core and a matrix pathway, contribute to topo-
graphically distinct spindles (Kim et al., 2015; Piantoni et al.,
2016). The core pathway dominates over posterior (i.e., postcen-
tral, occipital, and posterior temporal) regions, whereas spindles
generated through the matrix pathway are more spatially diffuse
and cover anterior regions. The differential mechanism of gener-
ation and topography of these two spindle classes may translate
into a unique function for each spindle class. Our results suggest
that the development of the core thalamocortical circuit is likely
under strong genetic control, whereas matrix neurons can be
molded based on environmental influence. Identifying shared
environmental factors that may influence spindles in anterior
regions is an important next step. For example, an enriched en-

vironment in part ameliorates cognitive deficits in rats following
a lesion of the anterior thalamic nuclei (Loukavenko et al., 2007;
Wolff et al., 2008; Dupire et al., 2013), suggesting that sections of
the thalamus may be sensitive to environmental influence. Thus,
we hypothesize that matrix thalamic projections may be shaped
through familial environment. Furthermore, the development of
anterior brain regions is more protracted than posterior regions
(Giedd et al., 1999), perhaps reflecting greater plasticity and re-
sponsiveness to environmental influences. We note that our find-
ings may be specific to this developmental period where twins still
live together and the impact of shared environment may be di-
minished or absent in adulthood.

Though genome-wide association studies (GWAS) have been
performed for sleep disorders, sleep duration, and sleep pheno-
types, studies examining the genetic basis of the sleep EEG are few
(Sehgal and Mignot, 2011). However, given the ubiquity of find-
ings implicating sleep spindles in psychiatric disorders and cog-
nitive function, overlapping genes between these domains and
spindles may exist and be a fruitful line of research. Our findings
inform future studies and suggest that GWAS should focus on
posterior compared with anterior spindles.

With regard to SO and SWA, we find that these oscillations are
under strong genetic control over posterior regions. Interest-
ingly, we find that environmental factors unique to each twin

Figure 6. Pearson correlation coefficients (Corr; 3 leftmost plots) and ICCs (3 rightmost plots) for MZ and DZ twins for beta 1 (16.2–20 Hz), beta 2 (20.2–24 Hz), gamma 1 (24.2–34 Hz), and
gamma 2 (34.2– 44 Hz) power. Derivations exhibiting a significant correlation coefficient (r value) or ICC based on bootstrap statistic are shown with a blue circle, whereas nonsignificant correlations
are shown with a black dot. Falconers heritability (h 2) is shown in the last column for the correlation maps and the difference in ICC values between MZ and DZ twins is shown for the ICC maps (MZ �
DZ). Correlation and ICC maps were scaled between 0 and 1 because negative correlations and ICC values are not biologically meaningful and likely reflect noise. The difference in ICC values between
MZ and DZ twins (i.e., MZ � DZ) and h 2 [i.e., 2 � (�MZ� � �DZ�)] for correlation coefficients are scaled between minima (min) and maxima (max); however, we note that negative values (i.e.,
instance where ICC and correlation values are larger in DZ compared with MZ twins are not biological meaningful). Minima and maxima occurring within the maps are indicated at the top right of
the maps.
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account for variance in SOs and to a lesser extent SWA, over
frontal derivations. On a neuronal level, SOs are generated
through periods of synchronous neural activity (On period) fol-
lowed by periods of relative neural silence (Off period). Few stud-
ies in humans make a distinction between SOs and SWA,
typically averaging over the entire frequency range. However,
there is some evidence that these two bands may be functionally
unique. For example, the topographic distribution of power
somewhat differs for SOs and SWA (Bersagliere et al., 2018).

Nonetheless, we interpret the unique environmental influ-
ence on SOs and SWA in light of the synaptic homeostasis hy-
pothesis (Tononi and Cirelli, 2006), which postulates that the
function of slow waves is the rescaling of synapses following wak-
ing and the extensive literature showing the sensitivity of these
oscillations to waking activity over a local cortical region (Huber
et al., 2004). The frontal cortex is responsible for higher order
cognitive function. Given that our sample consisted of students
whose waking day is largely spent in school learning and problem
solving, it is feasible that individual differences in workload dur-
ing the waking day could translate to variance in the strength of
slow waves. It remains unclear, however, why the contribution
from unique environmental factors is stronger for SOs than
SWA, however, our results suggest that future studies of sleep-
dependent learning examine SOs separately from SWA.

In contrast to a previous sleep EEG twin study (Ambrosius et
al., 2008), we found high heritability estimates across scalp loca-
tions in the beta bands. These bands are typically overlooked in
the sleep EEG literature due to concerns of contamination with
artifacts. Indeed, we went to great effort to clean the current
dataset to ensure high-quality data. In the waking EEG literature,
the potential of resting state beta activity as an endophenotype
has been recognized. Beta activity is thought to be important for
cognitive functions reliant upon long-range connections (Don-
ner and Siegel, 2011) and is associated with externalizing disor-
ders (Gilmore et al., 2010), such as substance use disorder (Bauer,
2001; Rangaswamy et al., 2002) and ADHD (Barry et al., 2003).
Based on a twin study in adolescents (mean age � 16.2 years) the
heritability of wake EEG beta power was estimated to be 86%
(van Beijsterveldt et al., 1996). We find similar, and somewhat
higher, heritability estimates in the sleep EEG in our younger
sample of adolescents. Thus, beta power in the sleep EEG may
also constitute an important endophenotype (Markovic et al.,
2018a).

Direct comparison of our study with sleep EEG studies in
adults is difficult because we used SEM combined with high-
density EEG recordings to quantify heritability patterns across
the scalp. However, applying ICC analysis at the derivation used
in the De Gennaro et al. (2008) paper (i.e., Cz; however we note
the use of average reference in our data and average mastoid in
their paper), we find ICC values in the same range (adults: MZ �
0.93; DZ � 0.46; adolescents: MZ � 0.92; DZ � 0.4). Thus, even
during a time when biology and behavior are in flux, the sleep
EEG exhibits high heritability similar to what is observed in
adults. Unlike the De Gennaro et al. (2008) study in adults, which
found no interaction between zygosity (i.e., MZ vs DZ) and der-
ivation (i.e., Fz, Pz, and Cz), suggesting no topographic variation
in heritability, we find strong topographic variation in heritabil-
ity. Whether this is due to the different age groups studied or is a
methodological difference should be addressed in future studies.

It is important to note that in addition to absolute power, the
topographic distribution of power differs in adolescents com-
pared with adults, with pronounced shifts in the region with
maximal power across adolescent development (Kurth et al.,

2010; Markovic et al., 2018b). For example, unlike SWA in adults,
which has a frontal focus, SWA in our sample has a posterior as
well as an anterior focus (Fig. 1), similar to what has been previ-
ously shown in this age range (Kurth et al., 2010). Although we do
not find a direct correspondence between regions of maximal
power and highest heritability (Figs. 1, 4), future high-density
EEG studies in adults should clarify the relationship between
heritability and the topographic distribution of power.

With regard to sleep stages, our heritability estimates of sleep
latency and wake after sleep onset are very similar (within 5%) to
values measured using several weeks to months of actigraphy in
early adolescents (Sletten et al., 2013; Inderkum and Tarokh,
2018). The impact of genetic factors on other sleep stage variables
was minimal with REM sleep latency and slow-wave sleep show-
ing moderate (�40%) heritability. In adults, REM sleep and
slow-wave sleep show a modest genetic contribution (for review,
see Tafti, 2009). The lower heritability of sleep stage variables
compared with EEG spectral components is perhaps unsurpris-
ing given that sleep stages, unlike the EEG spectra, do not exhibit
high intrasubject stability across multiple nights (Sharpley et al.,
1990; Buckelmüller et al., 2006).

Some limitations of the study are important to note. First our
sample size (total of 30 pairs) was limited, however, it was in the
same range as the two other twin studies of sleep (De Gennaro et
al., 2008, total of 20 pairs; Ambrosius et al., 2008, total of 51
pairs). Furthermore, because of the sample size we were unable to
examine the impact of sex and age on our results. We, however,
examine a narrow age range and only include same-sex twin
pairs.

Given that sleep neurophysiology is altered in many neurode-
velopmental and neuropsychiatric disorders, our finding of high
heritability makes the sleep EEG an invaluable tool for studies
hoping to find vulnerability markers to psychiatric disorders.
This high heritability combined with the ease of measurement of
an “offline” brain, unaffected by external parameters or internal
states, make the sleep EEG an ideal biomarker to aid diagnostic
classification, predict outcomes, and track treatment response in
a neurodevelopmental population. Our findings have broad im-
plications for neurology, neuroscience, and psychiatry, given the
ubiquity of findings associating sleep and disorders of the brain.
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